

ICT Support for Adaptiveness and (Cyber)security in the Smart Grid

Low-Power Wireless Communication

Olaf Landsiedel

Activities this week (from Magnus)

- Sunday: Submitted your "progress report entry"
- Wednesday
 - Prepare a short presentation (a la planning report)
 - 7 min talk + 3 min Q/A
 - Core Idea
 - Motivation, Objectives
 - Scientific challenges
 - What you will do
 - What is end result? What will you build and demo? Use imagination, not formal but fun
 - Prepare draft planning report
 - Discuss within channel with supervisors articles
 - Print them out and show us

Do not forget to mark attendance!

Today

- First ~45 minutes
 - This lectures
- Second 45 minutes
 - Working in groups without supervision
 - discuss and prepare for Wednesday
 - Urgent questions
 - Magnus and Marina are on slack

Routing

Why this path? Why no direct communication?

Lifetime

Goal for Today

- Devices
 - Low-power wireless communication
 - Or a "wireless sensor node" in general
- Routing in low-power wireless networks

 From source to sink
- Energy efficiency: often battery driven
 Enable a life-time of years: allow devices to sleep

Low-Power Wireless

Devices

Requirements for such a Device

• Low cost

• High energy efficiency

• Small size

A Sensor Node (or low-power wireless device)

A Sensor Node (or low-power wireless device)

- TI MSP 430 (16 bit RISC)
 - 8 MHz
 - 10 KB RAM
 - 48 KB code, 1MB flash
- Chipcon CC2420 radio
 - IEEE 802.15.4 compliant
 - 50 m. range indoor,250 m. range outdoor
 - bandwidth 250 kbits/s
- On-board antenna

Why not use WiFi or Bluetooth?

- WiFi/WLAN (IEEE 802.11)
 - Topology: mesh + single hop
 - Throughput: >100 Mbps
 - Power Consumption: ~300mW

- Bluetooth
 - Topology: Single-hop network
 - Master <-> Slave
 - Not good for multi-hop networking
 - Throughput: up to 24 Mbit/s
 - Power Consumption: up to 30mW

Summary: Device

- Low-Power Hardware
 - Simple Processor
 - Simple, energy-efficient radio

• Low cost, low energy consumption

Low-Power Wireless

Routing

Routing

Why this path? Why no direct communication?

Routing Metrics

- Path Selection
 - Which path to select?
 - Routing Metric?
 - Minimize Hops?
 - Reliability?
- Wireless Links
 - Highly dynamic

Routing Metric: ETX

- Goal: Minimize total transmissions per packet
 - Use Metric: Expected Transmission Count (ETX)
 - Measure link over a time to determine ETX
 - Link throughput ≈ 1 / Link ETX

Route ETX

- Route ETX = Sum of link ETXs
 - Communication is expensive
 - ETX predicts the tx count of a packet -> Reflects energy
 - Route selection:
 - Choose route with lowest route ETX

Question: Which Route is better?

- Which route to take
 - A -> B -> C or A -> C?
 - Example 1
 - A -> B -> C: 2.1 TX
 - A -> B: 2 TX
 - Take A->B

- Example 2
 - A -> B -> C: 2.1 TX
 - A -> C: 3 TX
 - Take A -> B -> C
- Example 3
 - A -> B -> C: 2 TX
 - A -> C: 2 TX
 - Take any

Summary: Routing Metric

- Expected Transmission Count (ETX)
 - Minimize total number of transmission
 - Good for energy: More transmissions -> more energy
 - Combines hops and reliability into single metric

- Directed Acyclic Graph (DAG) Information Option (DIO) messages are broadcast to build the tree; includes a node's rank (its level), ETX, etc.
- ETX probe is sent periodically to probe neighboring ETX

Low-Power Wireless

Sleeping Devices

Energy-Efficient MAC

- Targeted life time of WSN
 - Months or years
- Simple back of the envelope calculation:
 - AA battery: About 2000 mAh
 - CC2420 radio:
 19.7mA in RX mode
 (listening to channel)
 - 2000mAh / 19.7mA
 - = 101.5 hours
 - = 6 days

Operation	Telos
Minimum Voltage	1.8V
Mote Standby (RTC on)	5.1 µA
MCU Idle (DCO on)	54.5 μA
MCU Active	1.8 mA
MCU + Radio RX	21.8 mA
MCU + Radio TX (0dBm)	19.5 mA
MCU + Flash Read	4.1 mA
MCU + Flash Write	15.1 mA
MCU Wakeup	6 µs
Radio Wakeup	$580 \ \mu s$

We want month or years: How?
 →Keep radio off most of the time

Solution: Duty Cycling

Duty cycle from 0.1% to 1%

wakeups 24

Duty Cycling

- Synchronous duty cycling
 - Knowing the wakeup time of destination
 - Transmit accordingly
 - Advantage: very energy efficient
 - Disadvantage: requires synchronization
- Asynchronous duty cycling
 - Not knowing the wakeup time
 - Example: Repeat transmission until destination wakes up and acknowledges
 - Advantage: simple, no time synchronization
 - Disadvantage: not as energy efficient

Synchronous Duty Cycling

- Idea:
 - Switch nodes, radios off
 - Ensure that neighboring nodes turn on simultaneously
 - To allow packet exchange (rendezvous)
 - Requires Time Synchronization
 - Called "Synchronous duty cycling"
- In wakeup phase
 - Only in these *active periods*, packet exchanges happen
 - Need to also exchange wakeup schedule between neighbors

Synchronous Duty Cycling

- Nodes try to pick up schedule synchronization from neighboring nodes
- If no neighbor found, nodes pick some schedule to start with
- If additional nodes join, some node might learn about two different schedules from different nodes
 - "Synchronized islands"
- To bridge this gap, it has to follow both schemes

Synchronous Duty Cycling: Discussion

- Pro: Energy-Efficient
 - A node sleeps most of the time
 - Periodically wake up for short intervals to see if any node is transmitting a packet
- Cons
 - Time sync overhead
 - Account for clock drifts etc.
 - Add guard spaces
 - Some nodes are in multiple "clusters"
 - More wakeups
 - Have higher energy consumption

Asynchronous Duty Cycling

- So far: Periodic sleeping
 - Need some means to synchronize wake up of nodes
 - Ensure rendezvous between sender and receiver
- Alternative option: Don't try to explicitly synchronize nodes
 - Have receiver sleep and only periodically sample the channel
- Repeat packet until receivers wakes up
 - And acknowledges
 - No Synchronization required! Asynchronous duty cycle

Asynchronous Duty Cycling: Discussion

- Pro: Energy-Efficient
 - A node sleeps most of the time
 - No need for time sync
 - Periodically wake up for short intervals to see if any node is transmitting a packet
- Cons
 - Transmission are costly
 - Especially when nodes wakeup rarely
 - A single transmissions is repeated many times
 - High channel utilization in this time

Summary

- Devices: cheap, low-power
 - Low-power wireless
- Routing: Expected Transmission Count (ETX)
 Account for link dynamics
- Synchronous and asynchronous duty cycling

 Sleeping devices

Questions?

In part, inspired from / based on slides and figures from Jochen Schiller, Holger Karl, Klaus Wehrle, Kyoung-Don Kang, Leonardo Leiria Fernandes, Joe Polastre, Chenyang Lu, Leo Selavo, Luca Mottola, Adam Dunkels, and many others